If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+45x-9=0
a = 15; b = 45; c = -9;
Δ = b2-4ac
Δ = 452-4·15·(-9)
Δ = 2565
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2565}=\sqrt{9*285}=\sqrt{9}*\sqrt{285}=3\sqrt{285}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3\sqrt{285}}{2*15}=\frac{-45-3\sqrt{285}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3\sqrt{285}}{2*15}=\frac{-45+3\sqrt{285}}{30} $
| k(k+2)=168 | | 8.9x+77.98=-11.1x+77.48 | | p2-4p+18=0 | | 4(6z-1)-2(z+6)=7(z+1) | | 5x–3=x+17 | | -9(t-4)-(t+8)=6 | | X^3=6x+20 | | 3(x+6)+2(x+3)=64 | | 3x+6=-4x+6 | | 5p=20+21 | | (3x+5)^2=-1 | | 10+x-1÷3x=0 | | (12x2x)+40x+(30x1.5x)=350000 | | 5/2x-4=-x+3 | | 8x-4-6=6 | | 9+3(x-1)=3-3(x-2) | | -2/3x-2=-8/3x+4 | | 5x/6=40 | | 2-x÷15=-3 | | 3/2(x+8)=9 | | X2-21x+100=x+1 | | 3(6x-3)=4(5x-4) | | x^2+125x=-187500 | | 7(2x-1)=5(2x-3) | | 5x+9=3(x+1) | | (y-8)-(y+)=6y | | 6x²+7x-20=0 | | A=d+2 | | 7h/9-17=44/27 | | 10x*5=15 | | 7h/9-17=117/27 | | (-4)/x=0 |